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Executive Summary
The Databricks Well-Architected Framework provides a comprehensive set of best practices and guidelines for building secure, high-performing, resilient, and efficient data platforms on Databricks. This framework is designed to help enterprise architects, platform engineers, and data teams evaluate and improve their Databricks implementations against industry-proven architectural principles.
Based on five core pillars—Operational Excellence, Security, Reliability, Performance Efficiency, and Cost Optimization—this framework enables organizations to build production-ready Lakehouse architectures that meet enterprise requirements for scalability, governance, and business continuity.
This document provides detailed guidance for each pillar, including assessment checklists, implementation patterns, and real-world recommendations for achieving architectural excellence on the Databricks platform.
1. Introduction to the Well-Architected Framework
1.1 Framework Overview
The Well-Architected Framework establishes a consistent approach for evaluating architectures and implementing designs that scale with business needs. The framework addresses common challenges faced by organizations implementing Lakehouse architectures:
How do we ensure our data platform is secure and compliant?
How do we build resilient pipelines that recover from failures?
How do we optimize performance while controlling costs?
How do we establish operational practices for production workloads?
Framework Pillars
	Pillar
	Focus Area
	Key Outcomes

	Operational Excellence
	Run and monitor systems
	Automated operations, observability

	Security
	Protect data and systems
	Defense in depth, compliance

	Reliability
	Recover from failures
	Fault tolerance, disaster recovery

	Performance Efficiency
	Use resources efficiently
	Optimized workloads, scalability

	Cost Optimization
	Minimize unnecessary costs
	Right-sizing, governance



1.2 How to Use This Framework
This framework should be used throughout the lifecycle of your Databricks implementation:
Design Phase
Review pillar requirements before architecture decisions
Use checklists to validate design choices
Identify trade-offs between pillars
Implementation Phase
Follow pillar-specific implementation patterns
Implement monitoring and alerting early
Apply security controls from the start
Operations Phase
Conduct regular well-architected reviews
Continuously improve based on metrics
Update practices as platform evolves
1.3 Trade-off Considerations
Architectural decisions often require trade-offs between pillars:
	Trade-off
	Consideration

	Security vs Performance
	Encryption adds overhead but is essential

	Reliability vs Cost
	Redundancy increases cost but reduces risk

	Performance vs Cost
	Larger clusters improve speed but increase spend

	Operational Excellence vs Speed
	Automation takes time but pays dividends



2. Operational Excellence Pillar
2.1 Design Principles
Operational excellence focuses on running and monitoring systems to deliver business value and continuously improve processes and procedures.
Core Principles
Perform operations as code: Define infrastructure and operations using version-controlled code
Make frequent, small, reversible changes: Reduce risk through incremental changes
Refine operations procedures frequently: Continuously improve operational practices
Anticipate failure: Design for failure and practice recovery procedures
Learn from operational events: Implement feedback loops for continuous improvement
2.2 Infrastructure as Code
All Databricks infrastructure should be defined and managed through code:
Terraform Configuration
# Databricks workspace configuration
resource "databricks_workspace" "data_platform" {
  name                        = "data-platform-prod"
  region                      = "eastus"
  sku                         = "premium"
  managed_resource_group_name = "databricks-managed-rg"

  custom_parameters {
    no_public_ip       = true
    virtual_network_id = azurerm_virtual_network.databricks.id
    public_subnet_name = azurerm_subnet.public.name
    private_subnet_name = azurerm_subnet.private.name
  }
}

# Cluster policy for standardization
resource "databricks_cluster_policy" "standard" {
  name = "Standard Data Engineering Policy"
  definition = jsonencode({
    "spark_version": {
      "type": "fixed",
      "value": "13.3.x-scala2.12"
    },
    "node_type_id": {
      "type": "allowlist",
      "values": ["Standard_DS3_v2", "Standard_DS4_v2"]
    },
    "autotermination_minutes": {
      "type": "range",
      "minValue": 10,
      "maxValue": 120,
      "defaultValue": 30
    }
  })
}
Databricks Asset Bundles
# databricks.yml
bundle:
  name: data_pipeline

workspace:
  host: https://adb-xxx.azuredatabricks.net

resources:
  jobs:
    daily_etl:
      name: "Daily ETL Pipeline"
      schedule:
        quartz_cron_expression: "0 0 6 * * ?"
        timezone_id: "America/New_York"
      tasks:
        - task_key: bronze_ingestion
          notebook_task:
            notebook_path: ./notebooks/bronze_ingestion
          new_cluster:
            spark_version: "13.3.x-scala2.12"
            num_workers: 4
            node_type_id: Standard_DS3_v2

targets:
  development:
    workspace:
      host: https://dev.azuredatabricks.net
  production:
    workspace:
      host: https://prod.azuredatabricks.net
2.3 CI/CD Implementation
Implement continuous integration and deployment for all Databricks artifacts:
GitHub Actions Pipeline
name: Deploy Databricks Jobs

on:
  push:
    branches: [main]
  pull_request:
    branches: [main]

jobs:
  validate:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3

      - name: Setup Databricks CLI
        uses: databricks/setup-cli@main

      - name: Validate Bundle
        run: databricks bundle validate

  deploy:
    needs: validate
    if: github.ref == 'refs/heads/main'
    runs-on: ubuntu-latest
    environment: production
    steps:
      - uses: actions/checkout@v3

      - name: Setup Databricks CLI
        uses: databricks/setup-cli@main

      - name: Deploy Bundle
        run: databricks bundle deploy -t production
        env:
          DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }}
          DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}
2.4 Monitoring and Alerting
Implement comprehensive monitoring across all layers of the platform:
System Tables Monitoring
-- Monitor job failures
SELECT
    job_id,
    job_name,
    result_state,
    error_message,
    execution_duration / 1000 / 60 as duration_minutes
FROM system.workflow.job_run_timeline
WHERE start_time >= current_date() - INTERVAL 1 DAY
AND result_state = 'FAILED'
ORDER BY start_time DESC;

-- Monitor cluster utilization
SELECT
    cluster_id,
    cluster_name,
    AVG(cpu_utilization) as avg_cpu,
    AVG(memory_utilization) as avg_memory,
    SUM(dbu_usage) as total_dbus
FROM system.compute.cluster_metrics
WHERE timestamp >= current_date() - INTERVAL 7 DAYS
GROUP BY cluster_id, cluster_name
HAVING AVG(cpu_utilization) < 20
ORDER BY total_dbus DESC;
Alert Configuration
# Configure alerts using Databricks SQL
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

# Create alert for failed jobs
alert = w.alerts.create(
    name="Critical Job Failures",
    query_id="query_id_for_job_failures",
    options={
        "column": "failure_count",
        "op": ">",
        "value": 0
    },
    rearm=300  # 5 minute rearm
)

# Configure notification destination
w.notification_destinations.create(
    display_name="Data Engineering Team",
    config={
        "email": {
            "addresses": ["data-eng@company.com"]
        }
    }
)
2.5 Runbook Documentation
Create comprehensive runbooks for operational procedures:
Example Runbook Structure
	Section
	Content

	Overview
	Purpose and scope of procedure

	Prerequisites
	Required access and tools

	Step-by-step Instructions
	Detailed procedural steps

	Validation
	How to verify success

	Rollback
	Steps to reverse changes

	Escalation
	Contact information for issues



2.6 Operational Excellence Checklist
	Category
	Item
	Status

	IaC
	All infrastructure defined in code
	

	IaC
	Version control for all configurations
	

	CI/CD
	Automated testing for notebooks
	

	CI/CD
	Automated deployment pipelines
	

	Monitoring
	System tables configured and queryable
	

	Monitoring
	Alerts for critical failures
	

	Monitoring
	Dashboard for key metrics
	

	Documentation
	Runbooks for common procedures
	

	Documentation
	Architecture documentation current
	

	Incident Management
	On-call rotation defined
	

	Incident Management
	Incident response process documented
	



3. Security Pillar
3.1 Design Principles
Security focuses on protecting data, systems, and assets while delivering business value through risk assessments and mitigation strategies.
Core Principles
Implement a strong identity foundation: Use centralized identity with least privilege
Enable traceability: Monitor and audit all actions
Apply security at all layers: Defense in depth approach
Automate security best practices: Reduce human error through automation
Protect data in transit and at rest: Encrypt all data
Keep people away from data: Reduce direct access to sensitive data
3.2 Identity and Access Management
Azure AD Integration
# Configure SCIM provisioning for user sync
# Databricks Admin Console > Settings > User Provisioning

# Service Principal for automation
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.iam import ServicePrincipalAPI

w = WorkspaceClient()

# Create service principal
sp = w.service_principals.create(
    display_name="etl-automation-sp",
    application_id="<azure-ad-app-id>"
)

# Assign permissions
w.permissions.set(
    request_object_type="clusters",
    request_object_id="cluster-id",
    access_control_list=[{
        "service_principal_name": sp.display_name,
        "permission_level": "CAN_RESTART"
    }]
)
Unity Catalog Access Control
-- Create groups for access management
CREATE GROUP data_engineers;
CREATE GROUP data_scientists;
CREATE GROUP data_analysts;

-- Grant catalog-level permissions
GRANT USAGE ON CATALOG production TO data_engineers;
GRANT USAGE ON CATALOG production TO data_scientists;
GRANT USAGE ON CATALOG production TO data_analysts;

-- Grant schema-level permissions
GRANT ALL PRIVILEGES ON SCHEMA production.bronze TO data_engineers;
GRANT SELECT ON SCHEMA production.silver TO data_scientists;
GRANT SELECT ON SCHEMA production.gold TO data_analysts;

-- Grant table-level permissions
GRANT SELECT ON TABLE production.gold.sales_summary TO data_analysts;

-- Row-level security
CREATE OR REPLACE FUNCTION region_filter(region STRING)
RETURN IF(
    is_member('global_analysts'),
    TRUE,
    region = current_user_region()
);

ALTER TABLE production.gold.sales_summary
SET ROW FILTER region_filter ON (region);
3.3 Network Security
Private Link Configuration
# Azure Private Link for Databricks
resource "azurerm_private_endpoint" "databricks" {
  name                = "pe-databricks"
  location            = azurerm_resource_group.main.location
  resource_group_name = azurerm_resource_group.main.name
  subnet_id           = azurerm_subnet.private_endpoints.id

  private_service_connection {
    name                           = "databricks-connection"
    private_connection_resource_id = azurerm_databricks_workspace.main.id
    subresource_names             = ["databricks_ui_api"]
    is_manual_connection          = false
  }
}

# IP Access Lists
resource "databricks_ip_access_list" "allowed" {
  label     = "Corporate Network"
  list_type = "ALLOW"
  ip_addresses = [
    "10.0.0.0/8",
    "192.168.1.0/24"
  ]
}
Network Architecture
┌─────────────────────────────────────────────────────────────────┐
│                      Corporate Network                          │
│  ┌─────────────┐                                               │
│  │   Users     │──────────┐                                    │
│  └─────────────┘          │                                    │
│                           ▼                                    │
│              ┌─────────────────────┐                           │
│              │   Private Endpoint   │                           │
│              │   (Databricks UI)    │                           │
│              └──────────┬──────────┘                           │
└─────────────────────────│───────────────────────────────────────┘
                          │
┌─────────────────────────│───────────────────────────────────────┐
│                         ▼         Databricks VNet               │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │                    Control Plane                         │   │
│  │  ┌───────────┐  ┌───────────┐  ┌───────────┐           │   │
│  │  │    UI     │  │    API    │  │   Jobs    │           │   │
│  │  └───────────┘  └───────────┘  └───────────┘           │   │
│  └─────────────────────────────────────────────────────────┘   │
│                           │                                     │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │                     Data Plane                           │   │
│  │  ┌───────────┐  ┌───────────┐  ┌───────────┐           │   │
│  │  │  Cluster  │  │  Cluster  │  │  Cluster  │           │   │
│  │  └───────────┘  └───────────┘  └───────────┘           │   │
│  └─────────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────┘
3.4 Data Protection
Encryption Configuration
# Customer-managed keys for encryption
# Configure in Databricks Admin Console

# Column-level encryption for sensitive data
from pyspark.sql.functions import aes_encrypt, aes_decrypt

# Encrypt sensitive columns
encrypted_df = df.withColumn(
    "ssn_encrypted",
    aes_encrypt(col("ssn"), lit(encryption_key))
)

# Decrypt when needed (with proper permissions)
decrypted_df = encrypted_df.withColumn(
    "ssn",
    aes_decrypt(col("ssn_encrypted"), lit(encryption_key))
)
Data Masking
-- Create masking function
CREATE OR REPLACE FUNCTION mask_pii(value STRING)
RETURN CASE
    WHEN is_member('pii_readers') THEN value
    ELSE CONCAT('***', RIGHT(value, 4))
END;

-- Apply masking to column
ALTER TABLE customers
ALTER COLUMN ssn SET MASK mask_pii;

-- Dynamic masking based on role
SELECT
    customer_id,
    name,
    ssn,  -- Will be masked for non-privileged users
    email
FROM customers;
3.5 Audit and Compliance
Audit Log Analysis
-- Query audit logs for security events
SELECT
    event_time,
    user_identity.email as user_email,
    service_name,
    action_name,
    request_params,
    response.status_code
FROM system.access.audit
WHERE event_date >= current_date() - INTERVAL 7 DAYS
AND action_name IN (
    'createCluster',
    'deleteCluster',
    'grantPermission',
    'revokePermission'
)
ORDER BY event_time DESC;

-- Monitor failed authentication attempts
SELECT
    event_time,
    user_identity.email,
    source_ip_address,
    response.error_message
FROM system.access.audit
WHERE event_date >= current_date() - INTERVAL 1 DAY
AND response.status_code >= 400
ORDER BY event_time DESC;
3.6 Security Checklist
	Category
	Item
	Status

	Identity
	Azure AD/SSO integration configured
	

	Identity
	SCIM provisioning enabled
	

	Identity
	Service principals for automation
	

	Access Control
	Unity Catalog enabled
	

	Access Control
	Least privilege permissions
	

	Access Control
	Row/column-level security
	

	Network
	Private Link configured
	

	Network
	IP access lists enabled
	

	Network
	No public IPs on clusters
	

	Encryption
	Customer-managed keys
	

	Encryption
	Data encrypted at rest
	

	Encryption
	TLS for data in transit
	

	Audit
	Audit logging enabled
	

	Audit
	Regular audit log reviews
	

	Compliance
	Data classification implemented
	



4. Reliability Pillar
4.1 Design Principles
Reliability focuses on ensuring workloads perform their intended functions and recover quickly from failures.
Core Principles
Automatically recover from failure: Implement automated recovery mechanisms
Test recovery procedures: Regularly validate disaster recovery processes
Scale horizontally: Distribute workloads to reduce single points of failure
Stop guessing capacity: Use auto-scaling to match demand
Manage change through automation: Reduce manual intervention errors
4.2 High Availability Architecture
Multi-Region Deployment
# Configure multi-region data replication
# Primary region writes
primary_df.write \
    .format("delta") \
    .mode("append") \
    .save("abfss://container@primary.dfs.core.windows.net/data/events")

# Enable deep clone for disaster recovery
spark.sql("""
    CREATE TABLE dr_region.events
    DEEP CLONE primary_region.events
    LOCATION 'abfss://container@secondary.dfs.core.windows.net/data/events'
""")

# Schedule regular clones
# Run as scheduled job
def replicate_to_dr():
    tables = ["events", "customers", "orders"]
    for table in tables:
        spark.sql(f"""
            CREATE OR REPLACE TABLE dr_region.{table}
            DEEP CLONE primary_region.{table}
        """)
Cluster High Availability
# Configure cluster with spot instances and on-demand fallback
cluster_config = {
    "spark_version": "13.3.x-scala2.12",
    "node_type_id": "Standard_DS3_v2",
    "num_workers": 4,
    "aws_attributes": {
        "first_on_demand": 1,  # Driver is on-demand
        "availability": "SPOT_WITH_FALLBACK",
        "zone_id": "auto",
        "spot_bid_price_percent": 100
    },
    "autoscale": {
        "min_workers": 2,
        "max_workers": 10
    }
}
4.3 Fault Tolerance Patterns
Idempotent Pipeline Design
from delta.tables import DeltaTable

def idempotent_merge(source_df, target_path, key_columns):
    """
    Idempotent merge that can be safely re-run.
    """
    if DeltaTable.isDeltaTable(spark, target_path):
        target = DeltaTable.forPath(spark, target_path)

        merge_condition = " AND ".join([
            f"target.{col} = source.{col}"
            for col in key_columns
        ])

        target.alias("target").merge(
            source_df.alias("source"),
            merge_condition
        ).whenMatchedUpdateAll() \
         .whenNotMatchedInsertAll() \
         .execute()
    else:
        source_df.write \
            .format("delta") \
            .save(target_path)

# Usage
idempotent_merge(
    source_df=new_data,
    target_path="/silver/customers",
    key_columns=["customer_id"]
)
Retry Logic with Exponential Backoff
import time
from functools import wraps

def retry_with_backoff(max_retries=3, base_delay=1, max_delay=60):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            retries = 0
            while retries < max_retries:
                try:
                    return func(*args, **kwargs)
                except Exception as e:
                    retries += 1
                    if retries == max_retries:
                        raise e
                    delay = min(base_delay * (2 ** retries), max_delay)
                    print(f"Retry {retries}/{max_retries} after {delay}s: {e}")
                    time.sleep(delay)
        return wrapper
    return decorator

@retry_with_backoff(max_retries=3)
def load_external_data():
    return spark.read \
        .format("jdbc") \
        .option("url", jdbc_url) \
        .option("dbtable", "source_table") \
        .load()
4.4 Disaster Recovery
Recovery Point and Time Objectives
	Tier
	RPO
	RTO
	Strategy

	Critical
	1 hour
	4 hours
	Active-passive multi-region

	High
	4 hours
	8 hours
	Scheduled deep clones

	Standard
	24 hours
	24 hours
	Daily backups

	Low
	7 days
	48 hours
	Weekly backups



DR Runbook
# Disaster Recovery Procedure

def initiate_failover(primary_workspace, dr_workspace):
    """
    Execute failover to DR region.
    """
    # 1. Verify DR data freshness
    dr_sync_time = spark.sql("""
        SELECT MAX(_commit_timestamp)
        FROM dr_region.events
    """).first()[0]

    print(f"DR data synchronized up to: {dr_sync_time}")

    # 2. Update DNS/connection strings
    # (External to Databricks)

    # 3. Enable jobs in DR workspace
    w = WorkspaceClient(host=dr_workspace)
    jobs = w.jobs.list()
    for job in jobs:
        if job.settings.name.startswith("PROD_"):
            w.jobs.update(
                job_id=job.job_id,
                new_settings={"schedule": job.settings.schedule}
            )

    # 4. Verify connectivity
    verify_dr_health()

    return "Failover completed"
4.5 Pipeline Reliability
Checkpoint Management for Streaming
# Streaming with checkpointing
stream = spark.readStream \
    .format("delta") \
    .load("/bronze/events")

# Checkpoint enables exactly-once processing
stream.writeStream \
    .format("delta") \
    .option("checkpointLocation", "/checkpoints/events_silver") \
    .outputMode("append") \
    .start("/silver/events")

# Recover from checkpoint after failure
# Simply restart the stream - it resumes from checkpoint
Dead Letter Queue Pattern
def process_with_dlq(input_df, process_func, dlq_path):
    """
    Process records with dead letter queue for failures.
    """
    from pyspark.sql.functions import struct, lit, current_timestamp

    # Attempt processing
    try:
        processed_df = process_func(input_df)
        return processed_df, None
    except Exception as e:
        # Send failed records to DLQ
        dlq_df = input_df \
            .withColumn("_error", lit(str(e))) \
            .withColumn("_failed_at", current_timestamp())

        dlq_df.write \
            .format("delta") \
            .mode("append") \
            .save(dlq_path)

        return None, dlq_df
4.6 Reliability Checklist
	Category
	Item
	Status

	HA
	Multi-AZ deployment configured
	

	HA
	Cluster auto-scaling enabled
	

	HA
	Spot instance fallback configured
	

	Fault Tolerance
	Idempotent pipelines
	

	Fault Tolerance
	Retry logic implemented
	

	Fault Tolerance
	Circuit breakers for external calls
	

	DR
	DR region configured
	

	DR
	Data replication scheduled
	

	DR
	Failover runbook documented
	

	DR
	DR testing performed quarterly
	

	Streaming
	Checkpointing enabled
	

	Streaming
	Dead letter queues configured
	



5. Performance Efficiency Pillar
5.1 Design Principles
Performance efficiency focuses on using computing resources efficiently to meet requirements and maintain efficiency as demand and technologies evolve.
Core Principles
Democratize advanced technologies: Use managed services to simplify operations
Go global in minutes: Deploy to multiple regions easily
Use serverless architectures: Eliminate server management overhead
Experiment more often: Test different configurations easily
Consider mechanical sympathy: Understand how services work
5.2 Compute Optimization
Cluster Sizing Guidelines
	Workload Type
	Recommended Instance
	Workers
	Configuration

	ETL - Light
	Standard_DS3_v2
	2-4
	Auto-scale

	ETL - Heavy
	Standard_E8s_v3
	4-16
	Memory optimized

	ML Training
	Standard_NC6s_v3
	2-8
	GPU enabled

	Streaming
	Standard_DS4_v2
	4-8
	Always running

	SQL Analytics
	Serverless
	N/A
	Auto-managed



Photon Optimization
# Enable Photon for vectorized execution
# Cluster configuration: spark.databricks.photon.enabled true

# Workloads that benefit most from Photon:
# - Aggregations
# - Joins
# - Data scanning
# - String operations

# Verify Photon usage
spark.sql("EXPLAIN FORMATTED SELECT * FROM large_table").show(truncate=False)
# Look for "Photon" in the plan
5.3 Storage Optimization
File Optimization
# Optimize file sizes for read performance
spark.sql("""
    OPTIMIZE silver.events
    WHERE event_date >= '2024-01-01'
    ZORDER BY (user_id, event_type)
""")

# Configure target file size
spark.conf.set("spark.databricks.delta.optimize.maxFileSize", 134217728)  # 128MB

# Auto-optimization settings
spark.sql("""
    ALTER TABLE silver.events SET TBLPROPERTIES (
        delta.autoOptimize.optimizeWrite = true,
        delta.autoOptimize.autoCompact = true,
        delta.targetFileSize = '128mb'
    )
""")
Partition Strategy
# Effective partitioning for large tables
spark.sql("""
    CREATE TABLE silver.events (
        event_id STRING,
        user_id STRING,
        event_type STRING,
        event_timestamp TIMESTAMP,
        payload STRING
    )
    USING DELTA
    PARTITIONED BY (event_date DATE)
    TBLPROPERTIES (
        delta.autoOptimize.optimizeWrite = true
    )
""")

# Partition pruning verification
spark.sql("""
    EXPLAIN SELECT * FROM silver.events
    WHERE event_date = '2024-01-15'
""")
# Should show "PartitionFilters" in plan
5.4 Query Optimization
Caching Strategies
# Cache frequently accessed data
silver_df = spark.read.format("delta").load("/silver/customers")
silver_df.cache()
silver_df.count()  # Materialize cache

# Delta caching (SSD caching on workers)
spark.conf.set("spark.databricks.io.cache.enabled", "true")
spark.conf.set("spark.databricks.io.cache.maxDiskUsage", "50g")

# Cache table in memory
spark.sql("CACHE TABLE gold.dimension_table")
Broadcast Joins
from pyspark.sql.functions import broadcast

# Small dimension table (< 10MB)
dim_df = spark.read.format("delta").load("/gold/dim_product")
fact_df = spark.read.format("delta").load("/silver/sales")

# Broadcast small table for efficient join
result = fact_df.join(
    broadcast(dim_df),
    "product_id"
)

# Configure broadcast threshold
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", 104857600)  # 100MB
5.5 Adaptive Query Execution
# Enable AQE (enabled by default in DBR 7.3+)
spark.conf.set("spark.sql.adaptive.enabled", "true")
spark.conf.set("spark.sql.adaptive.coalescePartitions.enabled", "true")
spark.conf.set("spark.sql.adaptive.skewJoin.enabled", "true")

# AQE automatically:
# - Coalesces shuffle partitions
# - Handles skewed joins
# - Converts sort-merge joins to broadcast when appropriate

# Monitor AQE in Spark UI
# Look for "AdaptiveSparkPlan" in query plans
5.6 Performance Checklist
	Category
	Item
	Status

	Compute
	Right-sized clusters for workloads
	

	Compute
	Auto-scaling configured
	

	Compute
	Photon enabled where beneficial
	

	Storage
	Tables optimized regularly
	

	Storage
	Z-ordering on filter columns
	

	Storage
	Appropriate partition strategy
	

	Query
	Broadcast joins for small tables
	

	Query
	Caching for repeated reads
	

	Query
	AQE enabled
	

	Query
	Query plans reviewed
	



6. Cost Optimization Pillar
6.1 Design Principles
Cost optimization focuses on avoiding unnecessary costs and understanding where money is spent.
Core Principles
Implement cloud financial management: Establish cost accountability
Adopt a consumption model: Pay only for what you use
Measure overall efficiency: Track cost per business outcome
Stop spending on undifferentiated heavy lifting: Use managed services
Analyze and attribute expenditure: Understand cost drivers
6.2 Cluster Cost Management
Cluster Policies for Cost Control
# Create restrictive cluster policy
policy_definition = {
    "cluster_type": {
        "type": "fixed",
        "value": "all-purpose"
    },
    "autotermination_minutes": {
        "type": "range",
        "minValue": 10,
        "maxValue": 60,
        "defaultValue": 30
    },
    "custom_tags.CostCenter": {
        "type": "fixed",
        "value": "data-engineering"
    },
    "spark_conf.spark.databricks.cluster.profile": {
        "type": "forbidden"  # Prevent high-memory profiles
    },
    "node_type_id": {
        "type": "allowlist",
        "values": [
            "Standard_DS3_v2",
            "Standard_DS4_v2"
        ],
        "defaultValue": "Standard_DS3_v2"
    },
    "driver_node_type_id": {
        "type": "fixed",
        "value": "Standard_DS3_v2"
    }
}
Job Clusters vs All-Purpose
	Use Case
	Recommended
	Cost Benefit

	Production ETL
	Job Clusters
	40-60% savings

	Interactive Development
	All-Purpose
	N/A

	Scheduled Reports
	Job Clusters
	40-60% savings

	Ad-hoc Analysis
	All-Purpose with auto-terminate
	20-30% savings



6.3 Spot Instance Strategy
# Optimal spot configuration
cluster_config = {
    "aws_attributes": {
        "first_on_demand": 1,  # Driver only
        "availability": "SPOT_WITH_FALLBACK",
        "zone_id": "auto",
        "spot_bid_price_percent": 100
    },
    # Azure equivalent
    "azure_attributes": {
        "first_on_demand": 1,
        "availability": "SPOT_WITH_FALLBACK_AZURE",
        "spot_bid_max_price": -1  # Up to on-demand price
    }
}

# Expected savings: 60-90% on worker nodes
6.4 Cost Monitoring
System Tables Cost Analysis
-- Daily DBU consumption by workspace
SELECT
    usage_date,
    workspace_id,
    sku_name,
    SUM(usage_quantity) as total_dbus,
    SUM(usage_quantity * list_price) as estimated_cost
FROM system.billing.usage
WHERE usage_date >= current_date() - INTERVAL 30 DAYS
GROUP BY usage_date, workspace_id, sku_name
ORDER BY estimated_cost DESC;

-- Cost by job
SELECT
    custom_tags['JobId'] as job_id,
    custom_tags['JobName'] as job_name,
    SUM(usage_quantity) as total_dbus,
    SUM(usage_quantity * list_price) as estimated_cost
FROM system.billing.usage
WHERE usage_date >= current_date() - INTERVAL 30 DAYS
AND custom_tags['JobId'] IS NOT NULL
GROUP BY 1, 2
ORDER BY estimated_cost DESC;

-- Identify idle clusters
SELECT
    cluster_id,
    cluster_name,
    SUM(CASE WHEN cpu_utilization < 10 THEN 1 ELSE 0 END) as idle_samples,
    COUNT(*) as total_samples,
    SUM(CASE WHEN cpu_utilization < 10 THEN 1 ELSE 0 END) * 100.0 / COUNT(*) as idle_pct
FROM system.compute.cluster_metrics
WHERE timestamp >= current_date() - INTERVAL 7 DAYS
GROUP BY cluster_id, cluster_name
HAVING idle_pct > 50
ORDER BY idle_pct DESC;
6.5 Cost Allocation Tags
# Implement mandatory cost allocation tags
required_tags = [
    "CostCenter",
    "Project",
    "Environment",
    "Owner"
]

# Enforce through cluster policy
policy_definition = {
    "custom_tags.CostCenter": {
        "type": "fixed",
        "value": "DATA-ENG-001"
    },
    "custom_tags.Project": {
        "type": "fixed",
        "value": "data-platform"
    },
    "custom_tags.Environment": {
        "type": "allowlist",
        "values": ["dev", "staging", "prod"]
    }
}
6.6 Storage Cost Optimization
-- Identify storage by table
SELECT
    table_catalog,
    table_schema,
    table_name,
    SUM(size_in_bytes) / 1024 / 1024 / 1024 as size_gb
FROM system.information_schema.table_storage_metrics
GROUP BY 1, 2, 3
ORDER BY size_gb DESC
LIMIT 20;

-- Tables with excessive versions (candidates for VACUUM)
SELECT
    table_name,
    COUNT(DISTINCT version) as version_count
FROM system.information_schema.table_history
GROUP BY table_name
HAVING version_count > 1000;
6.7 Cost Optimization Checklist
	Category
	Item
	Status

	Compute
	Job clusters for production
	

	Compute
	Auto-termination configured
	

	Compute
	Spot instances utilized
	

	Compute
	Cluster policies enforced
	

	Monitoring
	Cost dashboards configured
	

	Monitoring
	Budget alerts enabled
	

	Monitoring
	Idle cluster alerts
	

	Tagging
	Cost allocation tags required
	

	Storage
	Regular VACUUM scheduled
	

	Storage
	Data lifecycle policies
	



7. Well-Architected Review Process
7.1 Review Cadence
	Review Type
	Frequency
	Participants

	Initial
	Project start
	All stakeholders

	Milestone
	Major releases
	Technical leads

	Periodic
	Quarterly
	Platform team

	Incident-driven
	After incidents
	Relevant teams



7.2 Assessment Template
## Well-Architected Assessment

### Project Information
- Project Name:
- Assessment Date:
- Participants:

### Pillar Scores (1-5)
- Operational Excellence: ___
- Security: ___
- Reliability: ___
- Performance Efficiency: ___
- Cost Optimization: ___

### High Priority Items
1.
2.
3.

### Action Plan
| Item | Owner | Due Date | Status |
|------|-------|----------|--------|
|      |       |          |        |

### Next Review Date:
8. Summary and Next Steps
8.1 Key Recommendations
	Pillar
	Top Priority

	Operational Excellence
	Implement CI/CD and monitoring

	Security
	Enable Unity Catalog and audit logging

	Reliability
	Design idempotent pipelines with DR

	Performance
	Optimize tables and enable Photon

	Cost
	Use job clusters and spot instances



8.2 Continuous Improvement
The Well-Architected Framework is not a one-time exercise. Organizations should:
Conduct regular reviews against the framework
Update practices as the platform evolves
Learn from incidents and near-misses
Share knowledge across teams
Benchmark against industry standards
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